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The Research Focus article by Peltier (2007), which is a distillation 
of Peltier et al. (2006), discusses the possible effects of Arctic fresh-
water forcing on the strength of Atlantic meridional overturning circula-
tion (AMOC), with emphasis on the Younger Dryas cold event (YD). 
The cause of the YD was originally associated with northward retreat 
of the Laurentide Ice Sheet out of Lake Superior, rerouting continental 
drainage from the Mississippi to the St. Lawrence River, with the atten-
dant increase in eastward-fl owing freshwater perturbing North Atlantic 
climate (Johnson and McClure, 1976; Rooth, 1982). More recent work 
empha sizes the opening of the eastward outlet through Lake Superior 
that caused much of Lake Agassiz to drain rapidly, with a 1 yr fl ood trig-
gering reduced AMOC (Teller et al., 2002). Lowell et al. (2005) argued  
that the lack of an identifi able spillway called the YD fl ood-trigger 
hypoth esis into question. Peltier cites this work as the motivation for 
Tarasov and Peltier (2005), who concluded that freshwater routing oc-
curred from the south to the north into the Arctic Ocean. Peltier fails to 
cite two recent studies that shed additional light on this question.

Meissner and Clark (2006) used the University of Victoria Climate 
Model to evaluate the response of AMOC to a 1 yr freshwater fl ood of 
0.3 Sv (1 Sv = 106 m3 s–1), a 0.074 Sv base discharge increase from the 
eastward freshwater routing for the duration of the YD, and the combina-
tion of the two. The modeled AMOC response to the 1 yr fl ood was neg-
ligible; only with inclusion of the base discharge increase did the model 
simulate a reduced AMOC for the duration of the YD. Thus, any fl ood that 
Lake Agassiz may have generated at the start of the YD was incapable of 
affecting AMOC, and the lack of evidence for a fl ood does not preclude 
the routing of western Canada freshwater to the St. Lawrence River.

Carlson et al. (2007) demonstrated that there is a clear low-salinity  
signal present in planktonic δ18O during the YD in the St. Lawrence 
Estuary  after accounting for decreased sea-surface temperature. Four in-
dependent geochemical tracers showed that this freshening was from an 
increased freshwater fl ux of 0.06 ± 0.02 Sv from western Canada to the St. 
Lawrence Estuary at the start of the YD.

Peltier refers to “direct paleoceanographic evidence” in sup-
port of Arctic freshwater forcing. Though he provides no references 
for that evidence, they are presumably listed in Peltier et al. (2006). 
These do not show an Arctic source of freshwater at the start of the YD 
~11.0 14C k.y. B.P. Light planktonic δ18O anomalies are observed in the Arc-
tic Ocean ~12.5-11.8 14C k.y. B.P. and ~10 14C k.y. B.P. (Poore et al., 1999; 
Andrews and Dunhill, 2004; Hall and Chan, 2004) with heavier planktonic 
δ18O during the YD arguing against an Arctic freshwater forcing (Hillaire-
Marcel et al., 2004). A light planktonic δ18O anomaly in the Laptev Sea 
off of northeastern Russia may or may not have occurred at the start of 
the YD (Spielhagen et al., 2005). During the last deglaciation, the largest 
light planktonic δ18O anomaly in Fram Strait occurred ~14.5 14C k.y. B.P. 
due to the disintegration of the Barents ice sheet (Koç and Jansen, 1994).

Peltier’s model uses Arctic freshwater forcings of 0.3 and 1.0 Sv for 
100 yr rather than the Tarasov and Peltier (2005) values of 0.12–0.22 Sv 

for 100 yr. The 1.0 Sv × 100 yr forcing is equivalent to a rise in eustatic 
sea level of 8.7 m at the start of the YD, which did not occur (Tarasov and 
Peltier, 2005). In neither case is the 100-yr forcing suffi cient to explain the 
duration of the YD. The subsequent decrease in the Arctic freshwater fl ux 
to 0.05–0.07 Sv of Tarasov and Peltier (2005) continues well beyond the 
YD, and thus cannot explain the duration of the YD.

We conclude that there are no existing paleoceanographic records 
that suggest an increase in Mackenzie River discharge or an Arctic fresh-
water source at the start of the YD. Rather, the available paleoceanographic 
evidence indicates that freshwater was routed from the Mississippi River 
to the St. Lawrence River at the start of the YD with a base fl ow discharge 
increase suffi cient to have reduced AMOC.
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The primary goal of the Comment by Carlson and Clark (2008) 
appears to be to draw attention to the Carlson et al. (2007) paper, which 
disputes the fi ndings of de Vernal et al. (1996). A joint reply focusing 
on signifi cant issues with the Carlson and Clark (2008) paper therefore 
appears appropriate.

De Vernal et al. (1996) applied the modern analogue technique to 
dino cysts to estimate sea-surface salinity (SSS) at the mouth of the St. Law-
rence River at the onset of and during the Younger-Dryas (YD) event. Their 
data did not support the idea of enhanced freshening during the YD. Subse-
quently, Lowell et al. (2005) reported on an unsuccessful search for a viable 
route that could have been the spillway via which Lake Agassiz water made 
its way through the Great Lakes–St. Lawrence River system into the North 
Atlantic. This is consistent with de Vernal and others’ conclusions.

Carlson et al. (2007) write “We corrected the Mg/Ca record in Glo-
bigerina bulloides [Gb] for sea surface temperature (SST) and salinity 
effects using an existing SST record (from de Vernal et al., 1996).” The 
idea that one may employ the results of one proxy to correct another is 
naïve. Dinocysts represent conditions in the photic zone where August 
SSS ranged from 30 psu to 31 psu (de Vernal et al., 1996). Planktic 
forami nifera such as G. bulloides could not have developed with such a 
low salinity. G. bulloides shells were either carried into the area by a saltier 
subsurface layer, as in the modern Gulf of St. Lawrence, or developed 
sporadically when suitable conditions prevailed.

Carlson et al. (2007) apply a dinocyst-inferred summer SST shift 
from ~8 °C to ~16 °C to the isotopic paleotemperature equation using an 
18O-record from Neogloboquadrina pachyderma, thus artifi cially produc-
ing a 2.75‰ drop in surface-water 18O content and a salinity drop of more 
than 3 psu. Firstly, N. pachyderma requirements are incompatible with a 
8–16 °C temperature range (they develop with T <<8 °C and S >34 or 
34.5 psu; e.g., Kucera, 2007; Spindler, 1996). At high latitudes, N. pachy-
derma represents conditions toward the deeper portion of the pycnocline 
between the surface layer and the underlying water mass (the Labrador Sea 
Water in the modern North Atlantic, the North Atlantic Water Mass in the 
modern Arctic) (Hillaire-Marcel and Bilodeau, 2000; Hillaire-Marcel et al., 
2004). It follows that the reconstruction of a salinity drop during the YD 
advocated by Carlson et al. (2007) is an artifact of (mis)interpretation.

The use by Carlson et al. (2007) of U/Ca ratios to label “a signal 
from the western Canadian plains” is odd. The data depicts a single brief 
excursion in the middle of the YD, not at its inception, inconsistent with 
the notion of a trigger from the west. Moreover, the modern St. Lawrence 
River system carries a U/Ca molar ratio of ~2 × 10−6 (Durand, 2000), 
compared with ~1.3 × 10−6 in seawater. There is no reason to believe that 
car bonate erosion was inactive in the St. Lawrence River area during the 
YD. It thus seems a stretch to argue that signifi cant freshwater was being 
fl ushed through the system from the west based on this argument. The use 
of Sr isotope data in Carlson et al. (2007) is similarly questionable in view 
of the large array of Sr sources in regional rocks.

Carlson et al. (2007) conclude “the dinofl agellate-cyst salinity recon-
struction for the St. Lawrence River is in error during the YD.” If this were 
true, one would have thought that they might have been more cautious in 

using temperatures reconstructed with the same dinocyst transfer func-
tion, as assumed in their paper.

Carlson et al. (2007) contest the assumption that the meltwater 
fl ux through the McKenzie River outlet to the Arctic Ocean computed 
in Tarasov  and Peltier (2005) could have caused the YD event, based 
upon the reference to Peltier et al. (2006). However, modern coupled 
 atmosphere-ocean global climate models such as the NCAR (National 
Center for Atmospheric Research) CSM1.4 model used in Peltier et al. 
(2006) are heavily damped. Thus the magnitude of the freshwater forcing 
needed to cause a signifi cant slowdown of the Atlantic meridional over-
turning circulation may be an overestimate. Their concerns regarding the 
carbon dating of freshening events in the Arctic also fails to recognize 
the issue of reservoir age for this interval of time.

Further support for Peltier (2007) and Tarasov and Peltier (2005) is 
provided by Darby et al. (2002), Moore (2005), Stokes et al. (2005), and 
Hillaire-Marcel and de Vernal (2008).
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